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Abstract

In this note, we present some insights and explanations surrounding
Support Vector Machines, a popular and practically effective method for
classification in Machine Learning. In doing so, we discuss its key the-
oretical aspects, advantages over other Machine Learning methods and
practical application. The main results discussed here are from [1] and [2].

1 Hard-SVM

1.1 Basic idea

Support Vector Machines (SVM) are a useful tool for learning high-dimensional
spaces. According to the fundamental theorem of learning [1], to learn half-
spaces via Empirical Risk Minimization (ERM) requires a training set whose
size depends on their VC dimension e.g., X ∈ Rd, the VC dimension is d + 1.
SVM on the other hand, require fewer samples in most practical cases to learn
halfspaces. This is because SVM are searching for “large margin” separators
and by restricting an algorithm to output a “large margin” separator can yield
a small sample complexity even if the dimension of the space where X resides is
large. Intuitively, “large margin” separators translate to small norm ‖w‖ half-
spaces. As SVM try to find halfspaces w with minimum norm the bound on
the generalization error, which depends on ‖w‖, will be tighter. Thus, fewer
examples are needed with SVM to obtain an ε-accurate halfspace.

1.2 Hard-SVM

In the realizable case, all halfspaces w that perfectly separate data are ERM
hypotheses as they result in LS(w) = 0. Now, Hard-SVM tries to find the
halfspace that, not only separates the data, but also gives the maximum margin.
For a training set, this is defined to be the minimal distance between a point in
the training set and the hyperplane. Formally, a distance of a point from the
plane is given as follows.

Claim 1 ( [1]). The distance between a point x and the hyperplane, defined by
(w, b), where ‖w‖ = 1 is | 〈w, x〉+ b|.
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Given that, the Hard-SVM problem can be stated as:

argmax
w,b:‖w‖=1

min
i∈[m]

| 〈w, xi〉+ b|

s.t. yi(〈w, xi〉+ b)) > 0,∀i.
(1)

The above problem is equivalent, assuming we are in the separable case, to:

argmax
w,b:‖w‖=1

min
i∈[m]

yi(〈w, xi〉+ b). (2)

Remark 1. If one halfspace does not separate samples perfectly there would
be at least one i for which yi(〈w, xi〉 + b) < 0. Thus, for this halfspace, the
quantity mini∈[m] yi(〈w, xi〉 + b), would be negative. As the algorithm tries
to find a halfspace w that leads to maximum margin i.e., maximum quantity
mini∈[m] yi(〈w, xi〉+ b), (realizable case), it will exclude such halfspaces. The
algorithm therefore will try to find the optimal halfspace by implicitly searching
for w for which yi(〈w, xi〉 + b) > 0,∀i. Hence, the inequality constraint in
Problem (1) can be dropped. Finally, yi(〈w, xi〉+b) = | 〈w, xi〉+b| always holds.
It follows that Problem (1) and (2) are equivalent.

1.3 Hard-SVM as a quadratic optimization problem

The Hard-SVM problem can be stated more elegantly as a quadratic optimiza-
tion problem which takes as input a training set S = (x1, y1), ..., (xm, ym) and

yields output the vectors ŵ = w0

‖w0‖ , b̂ = b0
‖w0‖ .

(w0, b0) = argmin
w,b

‖w‖2

s.t. yi(〈w, xi〉+ b)) ≥ 1, ∀i.
(3)

Problem (3) is equivalent to Problems (1) and (2). To see this, consider a

solution (ŵ, b̂) of Problem (3). For this pair, it holds:

yi(〈ŵ, xi〉+ b̂)) =
1

‖w0‖
yi(〈w0, xi〉+ b0)) ≥ 1

‖w0‖
. (4)

The last inequality follows by taking into account the constraint in Problem (3).

One can easily realize that, the solution (ŵ, b̂) corresponds to the halfspace with
the largest possible margin γ = 1

‖w0‖ as the above optimization problem seeks

to find w0 for which ‖w0‖ is the minimum. Further, ‖ŵ‖ = 1 and thus follows

that (ŵ, b̂) is the optimal solution of the Problems (1) and (2) as well. With
that, we conclude that the three problems are equivalent.

1.4 Sample complexity of Hard-SVM

Here, we make an additional assumption, that the training set is separable with
a margin of at least γ. In other words, we lower bound the margin in the training
set. Mathematically this can be written as:
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max
(w,b):‖w‖=1

min
i∈[m]

yi(〈w, xi〉+ b) ≥ γ (5)

We now define (γ, ρ)- separability as a property of a given distribution D.

Definition 1 ((γ, ρ)- separability, [1]). Let D be a distribution over Rd×{±1}.
We say that D is separable with a (γ, ρ)-margin if there exists (w?, b?) such
that ‖w∗‖ = 1 and with probability 1 over the choice (x, y) ∼ D we have that
y(〈w?, x〉+ b? ≥ γ) and ‖x‖ ≤ ρ.

Intuitively, the above definition can be explained as follows. Any point
(x, y) ∼ D we pick from D, with probability 1, will result in y(〈w?, x〉+ b?) ≥ γ
and ‖x‖ ≤ ρ, for at least one hyperplane (w?, b?) where ‖w?‖ = 1. Therefore,
D is separable if there exists a hyperplane so that these conditions hold for a
particular distribution D.

The following theorem holds for a distribution D that satisfies the γ, ρ-
separability assumption.

Theorem 1 ( [1]). Let D be a distribution over Rd × {±1} that satisfies the
(γ, ρ)- separability with margin assumption using a homogeneous halfspace i.e.,
b = 0. Then, with probability (1− δ) over the choice of a training set of size m,
the 0− 1 error of the output of Hard-SVM is at most√

4(ρ/γ)2

m
+

√
2 log(2/δ)

m
. (6)

The importance of the above result is that, when the separability assumption
holds, the sample complexity of Hard-SVM only depends on (ρ/γ)2 and is inde-
pendent of d, the dimension of the Euclidean space where xi reside. This SVM
property will be very valuable when we wish to learn a halfspace efficiently by
mapping the training data into a high-dimensional space using Kernel methods.

2 Soft-SVM

2.1 Basic idea

Hard-SVM assumes that the training set is linearly separable. In many practical
scenarios, this is not the case and Soft-SVM can be used instead. Soft-SVM is
a relaxation of Hard-SVM and can be applied whenever the training set is not
linearly separable i.e., when the assumption yi(〈w, xi〉 + b) > 0, ∀i, does not
hold.

2.2 Soft-SVM

Soft-SVM introduces nonnegative slack variables ξi that measure by how much
the constraint yi(〈w, xi〉+b) ≥ 1 is being violated in the Hard-SVM Problem (3).
It is worthwhile noting here that Soft-SVM not only allows for slight violations
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but also for misclassifications of the training instances. Mathematically the
Soft-SVM problem can be stated as follows.

min
w,b,ξ

(λ‖w‖2 +
1

m

m∑
i=1

ξi)

s.t. yi(〈w, xi〉+ b)) ≥ 1− ξi, ∀i,
ξi ≥ 0.

(7)

The Soft-SVM problem jointly minimizes the norm of w, that corresponds to
maximizing the margin, and the average of the violations ξi. The tradeoff among
the two is controlled by the constant λ. The Soft-SVM problem tries to balance
between large margin and large violations.

2.3 Soft-SVM as a Regularized Loss Minimization prob-
lem

Interestingly, Problem (7) can be recast into a RLM problem. To carry out this,
we first eliminate the slack variables ξi in the above formulation by relying on
the following observations:

• When 1− yi(〈w, xi〉+ b)) ≤ 0, instance xi is labeled correctly by w so the
best assignment for ξi, given that ξi ≥ 1− yi(〈w, xi〉+ b)), is ξi = 0.

• When 1−yi(〈w, xi〉+b)) > 0, instance xi has smaller than desired margin
so the best assignment for ξi, given that ξi ≥ 1 − yi(〈w, xi〉 + b)), is
ξi = 1− yi(〈w, xi〉+ b)).

From this analysis, it is evident that ξi results in the same output as the hinge
loss function. It follows that:

ξi = `hinge
(
(w, b), (xi, yi)

)
= max{0, 1− yi(〈w, xi〉+ b))}. (8)

We can then restate Problem (7) as:

min
w,b

λ‖w‖2 +
1

m

m∑
i=1

`hinge
(
(w, b), (xi, yi)

)
, (9)

or more compactly, as:

min
w,b

λ‖w‖2 + LhingeS (w, b). (10)

The Soft-SVM problem can therefore be formulated as a Regularized Loss Min-
imization problem that involves the hinge loss function. In general, one should
remember that, Soft-SVM has a bias towards low-norm separators so it tries
to find the maximum possible margin while minimizing the total distance of
violated instances from the margin.
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2.4 Sample Complexity of Soft-SVM

By reducing the Soft-SVM problem to an RLM problem enables us to leverage
all the theoretical machinery developed for RLM. In our case, we know that the
hinge loss function is convex and ‖x‖-Lipschitz. Letting ‖x‖ ≤ ρ and employing
the main RLM result gives us:

ES∼Dm [LhingeD (A(S))] ≤ LhingeD (u) + λ‖u‖2 +
2ρ2

λm
. (11)

Further, letting λ =
√

2ρ2

B2m , the halfspaces have bounded norm ‖u‖ ≤ B and

recalling that, the hinge loss is a surrogate convex function for the 0 − 1 loss
function, allows us to arrive at:

ES∼Dm [L0−1
D (A(S))] ≤ ES∼Dm [LhingeD (A(S))] ≤ min

w:‖w‖≤B
LhingeD (w) +

√
8ρ2B2

λm
.

(12)

We now state a few remarks associated with this result.

Remark 2. We can control the sample complexity of learning a halfspace as a
function of the norm of that halfspace B and the norm of x, independently of the
Euclidean dimension of x. So we don’t really care whether x ∈ R2,R3, ...,∈ Rn.
This is one of the key advantages of the SVM method.

Remark 3. With SVM, we introduce a bias — we prefer large-margin halfs-
paces. This can decrease our estimation error, the second term in (12) which
now depends on B, ρ, λ,m instead of the VC dimension d. This implies that
we can also control the generalization error variance, the difference between the
generalization LD and empirical error LS. The downside of this, is that this
bias might increase the approximation error, the first term in (12), which is
given with respect to the hinge loss. This is because we restrict our hypothesis
class by searching for halfspaces with small norm ‖w‖.

3 Duality

Many of the properties of SVM are obtained by considering the dual function
of the SVM problem. Further, the name “Support Vector Machine” stems from
the fact that the solution of the Hard-SVM problem w0 is supported by i.e., is
in the linear space of, the examples that are exactly at distance 1

‖w0‖ from the

separating plane.
We now derive the dual problem for the Hard-SVM problem in order to

reveal some of these properties. The primal problem can be stated as:

min
w

‖w‖2

2

s.t. yi(〈w, xi + b)〉 ≥ 1, ∀i.
(13)
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To formulate the dual problem, we construct the Lagrangian as:

L(w, b, a) =
‖w‖2

2
+

m∑
i=1

ai(1− yi(〈w, xi〉+ b)). (14)

The dual function can be computed as [3]:

g(a) = inf
w
L(w, b, a) = inf

w
(
‖w‖2

2
+

m∑
i=1

ai(1− yi(〈w, xi〉+ b))). (15)

The KKT conditions for this problem can be computed as:

∇wL = 0⇒ w =

m∑
i=1

yixiai = 0, (16)

∇bL = 0⇒
m∑
i=1

yiai = 0, (17)

ai(1− yi(〈w, xi〉+ b))), ∀i. (18)

It is evident from (16) that the solution w is lies in the linear subspace defined
by the instance vectors, the “support vectors”, xi. To obtain the dual problem
we plug w derived above into the Lagrangian (14). That yields:

g(a) =

m∑
j=1

aj −
1

2

m∑
i=1

m∑
j=1

aiajyiyj 〈xi, xj〉 , (19)

and the dual problem:

max
a

m∑
j=1

aj −
1

2

m∑
i=1

m∑
j=1

aiajyiyj 〈xi, xj〉 ,

s.t. ∀i, ai ≥ 0,

m∑
i=1

yiai = 0.

(20)

It is important to note here that strong duality holds and the primal problem
(13) and the dual problem (20) are equivalent. The dual problem only involves
the inner product among the instances xi and not the vectors themselves. This
will be very useful consider SVM with Kernel methods.
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