
Stochastic Gradient Descent

Stefanos Baros

1 Introduction

One of the advantages of Stochastic Gradient Descent (SGD) for machine learn-
ing is that it allows us to minimize the risk function LD(w) directly using a
gradient procedure without knowing its gradient. Thus, it allows to go beyond
standard empirical risk minimization (ERM) where we only deal with the em-
pirical error LS(h). In general, in stochastic gradient descent, we take a step
along a random direction as long as the expected value of the direction is the
negative of the gradient. SGD is efficient and easy to implement, and it enjoys
the same sample complexity as the Regularized Loss Minimization (RLM).

2 Gradient Descent

2.1 Method

We consider a function f : Rd → R with gradient ∇f(w) = (∂f(w)
∂w[1] , ...,

∂f(w)
∂w[d]).

Then, we initialize w(1) = 0 and update w according to the formula:

w(t+1) = w(t) − η∇f(w(t)), (1)

where η > 0. After T iterations, we output the average of the w(t) values
specifically:

w =
1

T

T∑
t=1

w(t). (2)

In general, the output could also be w(T), the last vector. When T is large,
w ≈ w?.

2.2 Convergence of Gradient Descent

In this section, we prove that gradient descent converges i.e., that f(w)−f(w?)
is bounded. To do that, we use two properties of the f function. The first one,
is that f is convex and the second one that is ρ-Lipschitz. We begin by stating
the main theorem related to the convergence of GD.

1

Theorem 1 ([1]). Let f be a convex, ρ-Lipschitz function and let w? ∈
argminw:‖w‖≤B f(w). If we run the GD algorithm on f for T steps with η =√

B2

ρ2T , then the output vector w satisfies:

f(w)− f(w?) ≤ Bρ√
T

(3)

Furthermore, for every ε > 0, to achieve f(w) − f(w?) ≤ ε, it suffices to run
the GD algorithm for a number of iterations that satisfies:

T ≥ B2ρ2

ε2
. (4)

Proof. We start by writing:

f(w)− f(w?) = f(
1

T

T∑
t=1

w(t))− f(w?) ≤ 1

T

T∑
t=1

f(w(t))− f(w?), (5)

where we used Jensen’s inequality to obtain the last inequality. Thus, we have
shown that:

f(w)− f(w?) ≤ 1

T

T∑
t=1

f(w(t))− f(w?). (6)

Since f is convex it holds:

f(w(t))− f(w?) ≤
〈
w(t) − ω?,∇f(w(t))

〉
. (7)

Using this inequality, we further obtain from (6):

f(w)− f(w?) ≤ 1

T

T∑
t=1

〈
w(t) − ω?,∇f(w(t))

〉
. (8)

We will now bound the right-hand side of (8).

1

η

〈
w(t) − ω?, η∇f(w(t))

〉
= − 1

2η
‖w(t) − ω? − η∇f(w(t))‖2 +

1

2η
‖w(t) − ω?‖2

+
η

2
‖∇f(w(t))‖2

=
1

2η
‖w(t+1) − ω?‖2 +

1

2η
‖w(t) − ω?‖2 +

η

2
‖∇f(w(t))‖2

(9)

Taking the sum yields:

T∑
t=1

〈
w(t) − ω?,∇f(w(t))

〉
=

1

2η
‖w(1) − ω?‖2 − 1

2η
‖w(T+1) − ω?‖2 +

η

2
‖∇f(w(t))‖2.

(10)

2

By taking into account that w(1) = 0 and that f is ρ-Lipschitz i.e., that
‖∇f(w(t))‖ ≤ ρ, we finally obtain:

T∑
t=1

〈
w(t) − ω?,∇f(w(t))

〉
≤ 1

2η
‖ω?‖2 +

η

2
ρ2T. (11)

From (8), we can finally obtain:

f(w)− f(w?) ≤ 1

2ηT
‖ω?‖2 +

η

2
ρ2. (12)

Letting η =
√

B2

ρ2T yields:

f(w)− f(w?) ≤ Bρ√
T
. (13)

The second statement follows by letting the right-hand side being less than ε
and solving for T .

3 Subgradients

Gradient descent can be applied to nondifferentiable functions as well by simply
using the subgradient of f(w) at w(t) in place of the gradient. We provide the
definition of subgradient below. First, recall that, for a convex function it holds:

∀u, f(u) ≥ f(w) + 〈u− w,∇f(w)〉 . (14)

which means that the tangent at any point w lies below f . This inequality can
be generalized in the case of subgradients as follows:

Lemma 1 ([1]). Let S be an open convex set. A function f : S → R is convex
if and only if for every w ∈ S there exists v such that:

∀u, f(u) ≥ f(w) + 〈u− w, v〉 . (15)

Therefore, f does not have to be differentiable to be convex. As long as a
line exists that touches the function at a point w and is not above the function
elsewhere f will be convex. The slope of this line is the subgradient. Consider
now the following definition of a subgradient.

Definition 1 ([1]). A vector v that satisfies (15) is called a subgradient of f
at w. The set of subgradients of f at w is called the differential set and denoted
by ∂f(w).

The following claim holds for differentiable functions.

Claim 1 ([1]). If f is differentiable at w then ∂f(w) contains a single element—
the gradient of f at w, ∇f(w).

3

An interesting result holds for functions defined as the maximum of other
functions.

Claim 2. Let g(w) = maxi∈[r] gi(w) for r convex differentiable functions g1, .., gr.
Given some w let j ∈ argmaxi gi(w). Then, ∇gj(w) ∈ ∂g(w).

We now go through an example to illustrate where this result can be useful.

Example-Hinge loss. We can use this result to compute the subgradient
of the hinge loss function f(w) = max{0, 1− y 〈w, x〉}. First, it is important to
notice that:

1− y 〈w, x〉 ≤ 0, f(w) = g1(w) = 0, (16)

1− y 〈w, x〉 ≥ 0, f(w) = g2(w) = 1− y 〈w, x〉 . (17)

Given that, and by employing the above claim, we can easily compute the
subgradient v as:

v =

{
∇g1(w) = 0, 1− y 〈w, x〉 ≤ 0,

∇g2(w) = 0, 1− y 〈w, x〉 ≥ 0.
(18)

Another interesting result says that a function is Lipschitz if its subgradient is
bounded. More formally:

Lemma 2. [1] Let A be a convex open set and let f : A → R be a convex
function. Then, f is ρ- Lipschitz over A if and only if for all w ∈ A and
v ∈ ∂f(w) we have that ‖v‖ ≤ ρ.

Next, we introduce the Stochastic Gradient Descent (SGD) algorithm.

4 Stochastic Gradient Descent

4.1 Method

As we mentioned before, the update direction in SGD is not required to be
exactly the gradient but can be any random vector whose expected value at
each iteration matches the gradient direction. The Stochastic Gradient Descent
method is described below.

• Parameters: scalar η > 0, integer T > 0.

• Initialize: w(1) = 0.

• For t = 1, 2, ..., T

– Choose vt at random from a distribution such that E[vt|w(t)] ∈
∂f(w(t))

4

– Update w(t+1) = w(t) − ηvt

Output: w = 1
T

∑T
t=1 w

(t)

Next, we state the main result related to the convergence of SGD together with
its proof.

4.2 Convergence of Stochastic Gradient Descent

We now state the main convergence result related to SGD.

Theorem 2 ([1]). Let B, ρ > 0, f be a convex function and let w? ∈ argminw:‖w‖≤B f(w).

Assume that we run the SGD algorithm on f for T steps with η =
√

B2

ρ2T . As-

sume also that, for all t, ‖vt‖ ≤ ρ with probability 1. Then:

E[f(w)]− f(w?) ≤ Bρ√
T
. (19)

Therefore, for any ε > 0, to achieve E[f(w)]− f(w?) ≤ ε, it suffices to run the
SGD algorithm for a number of iterations that satisfies:

T ≥ B2ρ2

ε2
. (20)

Proof. As in the proof of GD, the inequality:

f(w)− f(w?) ≤ 1

T

T∑
t=1

f(w(t))− f(w?), (21)

holds. Taking expectation w.r.t. random vectors v1, ..., vT yields:

Ev1:T [f(w)− f(w?)] ≤ 1

T

T∑
t=1

Ev1:T [f(w(t))− f(w?)]. (22)

The right-hand side follows from the linearity of expectation E[
∑T
t=1 Φ(t)] =∑T

t=1 E[Φ(t)]. On the other hand, the bound that we proved for GD also holds
here but instead of ∇f(w(t)) we have vt:

1

T

T∑
t=1

〈
w(t) − w?, vt

〉
≤ Bρ√

T
. (23)

Taking expectation here leads to:

Ev1:T
[1

T

T∑
t=1

〈
w(t) − w?, vt

〉]
≤ Bρ√

T
. (24)

5

Thus, we only need to show that:

1

T

T∑
t=1

Ev1:T [f(w(t))− f(w?)] ≤ Ev1:T [
1

T

T∑
t=1

〈
w(t) − w?, vt

〉
]. (25)

The key difference though between the proof of SGD and the proof of GD is
that here we cannot use the convexity property of f as before because:

f(w(t))− f(w?) ≤
〈
w(t) − w?, vt

〉
, (26)

does not necessarily hold as vt is not the gradient/subgradient of f , its expected
value is! Thus, it only holds:

f(w(t))− f(w?) ≤
〈
w(t) − w?,E[vt]

〉
. (27)

To proceed, we consider the law of total expectation that says that Ea[g(a)] =
Eβ Ea[g(a)|β]. This allows us to obtain:

Ev1:t
[〈
w(t) − w?, vt

〉]
= Ev1:t−1 Ev1:t

[〈
w(t) − w?, vt

〉
|vt−1

]
. (28)

But w(t) is known when vt is known so:

Ev1:t
[〈
w(t) − w?, vt

〉]
= Ev1:t−1

[〈
w(t) − w?,Ev1:t [vt|vt−1

〉]
= Ev1:t−1

[〈
w(t) − w?,∇f(w(t))

〉]
. (29)

Using the convexity property of f we obtain that:

Ev1:t
[〈
w(t) − w?, vt

〉]
≥ Ev1:t−1

[f(w(t) − f(w?))] = Ev1:T [f(w(t) − f(w?))].

(30)

The right-hand side equality follows as the extra terms in expectation vt, ..., vT
do not affect w(t). Finally we that we obtain:

Ev1:T [
1

T

T∑
t=1

〈
w(t) − w?, vt

〉
] ≥ 1

T

T∑
t=1

Ev1:T [f(w(t))− f(w?)]. (31)

which is the inequality (25) we wanted to prove.

5 Variants

In GD and SGD we require that w? ∈ H = {w : ‖w‖ ≤ B}. However, GD
or SGD may force w to step out of this bound during iterations. A way to

6

guarantee that this will not happen, is to use a projection operator. This leads
to the modified SGD update rule:

w(t+ 1
2) = w(t) − ηvt, (32)

w(t+1) = argmin
w∈H

‖w − w(t+ 1
2)‖. (33)

Basically, the second equality ensures that w(t+1) ∈ H as it is the projection
of w(t+ 1

2) on H. The most important property of the projection operator that
allows one to extend the convergence proof of the SGD to this case is its non-
expansiveness. Simply put, a projection operator P is nonexpansive if, for any
two points z2, z1 holds:

‖P (z2)− P (z1)‖ ≤ ‖z2 − z1‖. (34)

5.1 Convergence of SGD with Projection

The inequalities (22) and (25) that we proved for SGD are still valid here. We
only need to show that, when we use projection, the inequality (24) still holds.
To do that, we use (33) to get:

1

η

〈
w(t) − ω?, ηvt)

〉
= − 1

2η
‖w(t) − ω? − ηvt‖2 +

1

2η
‖w(t) − ω?‖2 +

η

2
‖vt)‖2

(35)

=
1

2η
‖w(t+ 1

2) − ω?‖2 +
1

2η
‖w(t) − ω?‖2 +

η

2
‖vt‖2. (36)

Using the nonexpansiveness property of the projection operator we get:

‖w(t+1) − w?‖2 ≤ ‖w(t+ 1
2) − w?‖2. (37)

Equivalently:

−‖w(t+ 1
2) − w?‖2 ≤ −‖w(t+1) − w?‖2. (38)

With this, we finally obtain

1

η

〈
w(t) − ω?, ηvt)

〉
≤ 1

2η
‖w(t+1) − ω?‖2 +

1

2η
‖w(t) − ω?‖2 +

η

2
‖vt‖2. (39)

As in the proof of GD, this allows us to show that:

1

T

T∑
t=1

〈
w(t) − w?, vt

〉
≤ Bρ√

T
. (40)

Taking expectation here leads to:

Ev1:T [
1

T

T∑
t=1

〈
w(t) − w?, vt

〉
] ≤ Bρ√

T
. (41)

Thus, we have shown that (24) still holds and the rest of the proof is identical
to the proof of SGD.

7

6 Learning with SGD

We now show how we can apply SGD to standard machine learning problems.
First, recall that:

LD(w) = Ez∼D[`(w, z)]. (42)

In ERM, we minimize the empirical error LS as an estimate of minimizing
LD(w). With SGD, we can minimize LD(w) directly. Since we do not know
the distribution D we cannot simply calculate ∇LD(w(t)) and minimize it with
gradient descent. With SGD however, we can. We only need a random vector
whose conditional expected value is ∇LD(w(t)) i.e., an unbiased estimate of
∇LD(w(t)). The following process describes how we can minimize the true risk
using SGD.

Process

• First we sample z ∼ D

• Then, we define vt to be the gradient of `(w, z) with respect to w at w(t).

• The gradient of the loss function `(w, z) at w(t) is therefore an unbiased
estimate of the gradient of the risk function, ∇LD(w(t)).

The last statement is easy to see by considering that:

E[vt|w(t)] = Ez∼D[∇`(w(t), z)] = ∇Ez∼D[`(w(t), z)] = ∇LD(w(t)). (43)

With this in mind, we describe the SGD method for minimizing LD(w) below.

• Parameters: scalar η > 0, integer T > 0.

• Initialize: w(1) = 0.

• For t = 1, 2, ..., T

– sample z ∼ D
– choose vt ∈ ∂l(w(t), z)

– update w(t+1) = w(t) − ηvt

Output: w = 1
T

∑T
t=1 w

(t)

We now have the following result.

Corollary 1. Consider a convex-Lipschitz-bounded learning problem with pa-
rameters ρ,B. Then, for every ε > 0, if we run the SGD method for minimizing
LD(w) with a number of iterations (i.e., number of examples)

T ≥ B2ρ2

ε2
, (44)

8

and with η =
√

B2

ρ2T , then the output of SGD satisfies:

E[LD(w)] ≤ min
w∈H

LD(w) + ε. (45)

We now make the following remark.

Remark . Number of iterations T here matches the number of sam-
ples needed i.e., sample complexity. This is because at every itera-
tion we need a sample instance z ∼ D to compute ∇`(w(t), z). So,
for T iterations we need T instances and this defines the training set
size.

7 SGD for Regularized Loss Minimization

We now want to explore how we can use SGD to solve the following RLM
problem:

min
w

(
λ

2
‖w‖2 + LS(w)). (46)

To use SGD, we first need to find a vector vt which is an unbiased estimator of:

∇f(w(t)) = λw(t) +∇LS(w(t)). (47)

We consider the vector:

v′t = λw(t) + vt. (48)

where vt = ∇`(w(t), z). This gives us:

E[v′t] = Ez∼S,uniformly[λw(t) +∇`(w(t), z)] = λw(t) +∇Ez∼S,uniformly[`(w(t), z)].
(49)

It is only left to show that:

∇Ez∼S,uniformly[`(w(t), z)] = ∇LS(w(t)). (50)

First, note that, every zi, from the training set z1, ..., zm, has probability of being
selected 1/m and results in a value for the loss function `(w(t), zi). Immediately,
we have:

E[`(w(t), z)] =
1

m
`(w(t), z1) + ...+

1

m
`(w(t), zm) := LS(w(t)). (51)

From this follows (50). We have hence shown that v′t is an unbiased estimator
of ∇f(w(t)). By choosing ηt = 1

λt we obtain the SGD update rule as:

w(t+1) = w(t) − 1

λt
(λw(t) + vt). (52)

Expanding further and doing some algebraic manipulations lead us to:

w(t+1) = − 1

λt

t∑
i=1

vi. (53)

9

8 Difference between GD and SGD when Mini-
mizing Empirical Risk

Assume that, we wish to apply gradient descent to minimize LS(w). The iter-
ation rule should be:

w(t+1) = w(t) − η∇LS(w(t)). (54)

Now, further assuming that w(t) = [w
(t)
1 , ..., w

(t)
n]T ∈ Rn and given that LS(w(t)) =

1
m

∑m
i=1 `(w

(t), zi), one easily realizes that computing ∇LS(w(t)) involves the
computation of n×m partial derivatives. On the other hand, the iteration rule
with SGD is:

w(t+1) = w(t) − ηvt. (55)

where:

vt = ∇`(w(t), zi), (56)

where zi is picked from S with probability 1/m. Thus, at each step of the SGD
update rule, we only need to compute the gradient of the loss function at a single
zi which amounts to calculating n partial derivatives. This distinction between
SGD and GD makes SGD computationally much more efficient in cases where
the training set size is large. Therefore, when the training set contains a large
number of examples m, GD will be significantly slower than SGD, despite both
requiring the same number of iterations for convergence. This will be due to
the increased computational effort required at each step when performing GD
versus SGD.

Conclusions. In these notes, we introduced Stochastic Gradient Descent,
a powerful and popular algorithm for solving machine learning optimization
problems. We explored different variations of SGD and analytically proved its
convergence.

References

[1] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

10

